

UML STATECHART & ALGEBRAIC SPECIFICATION
BASED CLASS LEVEL TESTING IN SOFTWARE ENGINEEING

AMIYA TRIPATHY

Lecturer, Don Bosco Institute of Technology,
Kurla (W), Mumbai, India.
amiya@donboscoit.ac.in

ADITYA SINHA
Lecturer, National Institute of Technology,

Jameshedpur, Jaharkhandh, India.
adityaksinha@yahoo.com

Abstract. There is an increasing need for effective,
fast and automatic testing of software. Tests are commonly
generated from program source code, graphical models of
software and specification / requirements. UML is
increasingly being used for software design. UML diagrams
also provide a significant opportunity for testing because
they precisely describe how the functions provided by
software are connected in a form that can be easily
manipulated by automated means. We present a
methodology for class level automatic testing of .NET
components using UML statechart and algebraic
specification. It checks for the consistency between software
specification and .NET implementation. This is a useful
framework for testing any software that exhibits state
machine intensive behavior. Test oracles are automatically
derived through axioms provided in algebraic specification.
We implemented a prototype of our methodology, which is
able to automatically generate test cases, test data and test
oracle. It automatically creates a test driver. Generated test
driver checks for the consistency between specification and
implementation and gives test report. This paper presents
prototype of our methodology with case study.

1 Introduction

It is estimated that testing often accounts up to fifty
percent of the overall software costs. A large amount of time
and money within the test process may be attributed to
incomplete, inconsistent or ambiguous informal
specifications of test objects. Software companies have been
able to improve upon several dimensions of software quality
and reduce development time. However, no significant
achievement has been made in controlling the growth of
bugs and defects. According to a recent article, defective
code remains the hobgoblin of the software industry,
accounting for as much as 45% of computer system
downtime and costing U.S. companies about 100 billion last
year in lost productivity and repairs. Software testing is an
indispensable tool in moving toward the goal of greater
software quality, and often consumes a great deal of
development resources in practice. A more formal approach
to the early phases of software development can reduce the
error rate drastically and, in addition, can significantly

improve the central testing activities like test case Design
and test Evaluation.

 There are many ways of testing. One way is manually

running all tests from the keyboard i.e. Hands-on testing. It
is common throughout the industry today because it
provides immediate benefits, but in the long run it is tedious
for the tester and expensive for the organization. Another
way is static test automation. The static automation scripts
exercise the same sequence of commands in the same order
every time. These scripts are costly to maintain when the
application changes. The tests are repeatable; but since they
always perform the same commands, they rarely find new
bugs. A different approach is using random test programs.
They come up with unusual test action sequences and find
many crashing bugs, but it’s hard to direct them to the
specific parts of the application that we want tested. Since
such tester does not know what they are doing, they miss
obvious failures in the application. Best approach is to
combine other tester’s approaches with a type of intelligent
test automation called model-based testing. The model-
based testing doesn’t record test sequences verbatim like
static test automation does, nor does it bang away at the
keyboard blindly. The model-based tests use a description of
the applications behavior to determine what actions are
possible and what outcome is expected. This automation
generates new test sequences endlessly, adapts well to
changes in the application, can be run on many machines at
once, and can run day and night.

 Large systems are inherently complex to test and require,
regardless of the test strategy, large numbers of test cases. If
a system testing method requires the tester to perform
frequent, complex manual tasks, then such a method is not
likely to be usable in a context where time to market is tight
and qualified personnel is scarce. Moreover testing is
perceived as tedious, uncreative, boring work by
practitioners. Therefore, the potential for automation of a
test methodology is an important criterion to consider.

 Because of the growing importance of object-oriented
programming, a number of testing strategies have been
proposed. Object-oriented programming consists of several
different levels of abstraction; namely the algorithmic level,

class level, cluster level, and system level. The testing of
object-oriented software at the algorithmic and system
levels is similar to conventional programming testing.
Testing at the class and cluster levels poses new challenges.
Since methods and objects may interact with one another
with unforeseen combinations and invocations, they are
much more complex to simulate and test than the hierarchy
of functional calls in conventional programs. In this report a
new methodology for object-oriented software testing at the
class levels is discussed.

For class-level testing, it is it is necessary to check for the
consistency between specification and implementation. To
address this issue we are using UML statechart diagrams
with algebraic specifications. Fundamental pairs of
equivalent ground terms are embedded in UML statechart
diagrams. This methodology is able to generate test cases
with test oracle and test driver. We are using a black-box
technique and then it is determined whether the objects
resulting from executing such test cases are observationally
equivalent. We have tested this methodology with .NET
components, yet same methodology can be used any other
type of components as well.

1.1 RELATED WORK

Existing works [10, 3, 2, 12, 11, 7] discuss how to
automatically generate test cases (transition sequences and
input data) for achieving certain coverage criteria. However,
the proposed approaches have the following limitations.
First, the UML statechart notation is not fully supported.
State diagrams used in [10, 3, 7] are not UML statecharts,
though they correspond to UML statecharts with very
simple features. For instance, state diagrams in these works
can be regarded as statecharts that involve call or signal
events, with guards but without actions. Among the
remaining three works, event type in [12] is not specified
whereas only change events [11] are accounted. Although
the UML defines seven different types of actions, actions
are not taken into account except in [11, 12, 2], where
actions are either assignment (to attributes), return, or call
action. Last, guards are not considered in [11]. These are
important limitations as they limit the applicability of the
different approaches. Second, in defining operations, only
simple modifications are supported by events and actions,
namely, modifications that are simple enough to be captured
in the form of assignments to attributes. More importantly,
existing works do not suit object oriented System well. For
example, associations among classes cannot be represented
in existing works and this might explain why existing works
considered statechart in isolation without accounting for the
interactions among object statecharts.

Chen, Tse and Chen [4] present a new methodology for
testing called TACCLE (Testing at the Class and Cluster
Levels). They have an interesting insight into object
oriented testing. The research details a method for testing
the interactions between related objects properties and
methods, what they call a cluster. A specification language
called Contract is used to describe the interactions between
objects. The article describes testing using fundamental
equivalent and non equivalent terms.

1.2. OBJECTIVE

 Our objective is to build a test automation framework
that works by receiving a UML Statechart and algebraic
specification of the component to be tested and .NET
executable version of the component. We intend to
determine set of test cases along with test oracle and a test
driver to automatically run these test cases.

2 BACKGROUND INFORMATION

 We first provide necessary background information
about this report, clarify relevant issues, and state the
assumptions we make in this report.

2.1 UML

 This section is a brief introduction to UML. For
complete references, see [9]. UML is a third generation
semi-formal modeling language used for specifying,
visualizing, constructing, and documenting object-oriented
systems [8]. UML rigorously defines the semantics of the
object meta model and provides a notation for capturing and
communicating object structure and behavior. It is the de
facto industrial standard developed, maintained, and
managed by the Object Management Group (OMG)
including many methodologies - including Grady Booch
(Booch Method), Jim Rambaugh (Object Modeling
Technique[OMT]), Ivar Jacobson (Object-oriented software
engineering[OOSE]), and David Harel (Statecharts). UML
is not a programming language. We cannot write a program
in UML. Though some CASE tools provide code generation
capabilities from UML models, the generated code is
nothing more than a framework. Developers still need to
write code to implement the methods.

2.2 XMI

Object Management Group (OMG) has defined XMI
[5] standard for data and metadata interchange. It enables
exchange of any kind of metadata that can be expressed by
using the MOF (Meta-Object Facility)[6]. It integrates three
industry standards MOF, UML and XML [1]. The fact that
OMG defines the UML meta-model as a MOF meta-model

implies that XMI serve as an interchange format for UML.
OMG has defined both a Document Type Definition (DTD)
and XML Schema [1] for XMI documents. To distinguish
between XMI in general and its application to UML, the
format is often referred to as XMI[UML]. XMI employs
XML as the encoding format. XMI specifies an open
information interchange model that is intended to give
developers working with object technologies, the ability to
exchange programming data. It is used to exchange data and
metadata between different tools. XMI provides many
advantages: XMI document can be validated against a DTD
or an XML Schema, an XMI document can employ Xlink
technology to address elements in other documents, it is
extensible, i.e., tools are permitted to extend the basic
elements, and XMI can transfer the difference of the
documents so that the overall documents needs only to be
transferred once. However the disadvantages are that there
are too many versions of XMI (version 1.1, 1.2, 2.0), XMI
does not define any standards for pictorial rendition of
contained data, and the XMI files are generally very large in
size. There are many commercial and open source UML
modeling tools, which support XMI. A plug-in from
UNISYS, for Rational Rose 2002 [2], is used to export XMI
generated for UML Statechart diagram. We have not tested
the differences among various other UML modeling tools in
interpreting the generated XMI. The UNISYS plug-in
supports XMI version 1.0 and 1.1. We use XMI version 1.1
and UML version 1.3 for decoding UML Statechart
diagrams.

2.3 .NET ASSEMBLY

When we build or programs or components in .NET,
both metadata and code are stored in self-contained units
called assemblies. An assembly stores information about the
components and resources against which it is compiled, as
well as the types defined within it. The Common Language
Runtime (CLR) accesses this information; we can access
this metadata information as well. To use assembly we must
use the System.Reflection namespace, which is where the
Assembly class is defined. There are many info Classes
within the System. Reflection namespace i.e. MemberInfo,
MethodInfo, ParameterInfo, ConstructorInfo, FieldInfo and
EventInfo. Using all these info classes complete detail of
component can be derived. We are using .NET assembly of
component to create object of the classes for which class
level testing to be done.

3 STATECHART DIAGRAM

Harel statecharts form the basis of UML statecharts.
Statecharts overcome the limitations of traditional FSMs
while retaining benefits of finite state modeling. Statecharts
include the notions of both nested hierarchical states and

concurrency while extending the notion of actions.
Statecharts consist of states, transitions, synch states, and a
variety of different state like things called pseudo states.
 According to [9],”State machines can be used to specify
behavior of various elements that are being modeled”.
Statechart diagrams are the diagrammatic representation of
state machines. Statecharts can be used to describe the
behavior of individual entities (e.g., a class) as well as a
collection of entities (e.g., class cluster, subsystem, system
etc.). From now on, this report will assume class statecharts
only. Nevertheless, conclusions and results obtained from
class statecharts can easily be generalized to include other
types of statecharts.
 One important issue is the one of testability: The degree
to which a model (in our case, a UML Statechart model) has
sufficient information to allow automatic generation of test
cases [5]. Since the use of the UML notation is not
constrained by any particular, precise method, one can find
a great variability in terms of the content and form of UML
artifacts, whether at the analysis or design stages. However,
the way UML is used determines the testability of the
produced UML artifacts. We therefore address the
testability requirements we need to impose on UML
artifacts. In the following, we’ll present testability issue of
statechart with definitions.

3.1 ASSUMPTIONS WITH STATECHART

A state machine consists of a number of transitions and
states. A transition consists of an event, a guard condition,
and an action sequence. The following definitions are taken
from [8]. A transition specifies a directed relation between
two states that when the specified event occurs and the
specified guard is satisfied, the object will leave the first
state, perform specified actions, and enter the second state.
An event models external stimulus (input) to the state
machine; a guard is a Boolean expression evaluated when an
event occurs; an action models the response (output) of the
state machine. A special type of action is the activity, which
is an ongoing task that an object executes while it stays in a
specific state.
Next we discuss the testability of UML statecharts.

3.2 STATECHART FLATTENING

It is common practice to model the complex behavior of
an object using composite state and concurrent sub-states.
The use of such mechanisms helps to cope with complexity
but makes it hard to generate test cases. It is not obvious
how many distinct states and transitions are there in the
statechart. In order to apply the state-based criteria
mentioned in the introduction, it is necessary to remove all
hierarchy and concurrency in the statecharts and obtain flat
statecharts, in which every distinct state is represented by a

node and all possible transitions are shown explicitly [2].
The transformation from hierarchical and concurrent
statecharts into flat statecharts is explained in [12] and in
this report we assume there are such algorithms to flatten
user-supplied statecharts.

3.3 NONDETERMINISM

The semantics of UML statecharts allow for the
possibility of non-determinism in state transitions: Multiple
transitions may be enabled within a state machine [9]. For
example, when two transitions originating from the same
state are enabled by the same event, then only one of them
will fire. If firing priorities are not specified, the selection of
which transition to fire is non-deterministic. This research
does not handle such cases as we assume the statecharts
deterministic.

3.4 EVENT

According to the UML specification [UML01], there
are five types of events: call, signal, change, time and
completion1 event. We do not account for the completion
event because it represents the completion of an activity
rather than an explicit event [9]. Therefore its occurrence
depends on when an activity completes its execution. In our
state-based testing environment, we want the test driver to
have full control over when transitions fire and this can only
be done by creating explicit events to trigger transitions.

In the UML meta model, only a call event is associated
with an operation [9], which is called the event handler. A
call event is more complex than other types of events since
its event handler can modify the collective state while other
types of events only affect the state of one object. In this
work, only the effect of call events is accounted for. The
effect of other types of events is ignored. The effect of a call
event is captured by the post condition of its event handler.

3.5. Action

Eight types of actions are defined in the UML
specification [9]: assignment, call, create, destroy, return,
send, terminate, and uninterrupted.
 A return action returns the control to the object that
invokes its execution and this has no effect on the collective
states. The terminate action causes the self-destruction of
the owning object of the state machine. Because the owning
object will no longer exist after its execution, the terminate
action is not interesting for this work and is thus not
considered.

This report considers the following actions, which
might change the collective state: assignment, call, send,

create, and destroy. Among these types of actions only the
call action is associated with an operation and therefore has
its effect explicitly modeled in the operation.
 In this report it is desirable that the effects of all types of
actions are captured by algebraic specifications. We are
using stereotype facility of UML to put algebraic
specification in UML statechart. Ground terms from this
algebraic specification are extracted and testcases with test
oracle is prepared using our XMI Parsing mechanism.

4 Algebraic Specifications
An algebraic specification for a class is composed of a

syntax declaration and a semantic specification. The syntax
declaration lists the operations involved, as well as their
domains and co-domains, corresponding to the input
parameters and output of the operations. The semantic
specification consists of axioms in the form of conditional
equations that describe the behavioral properties of the
operations.

An algebraic specification for a class is composed of a
syntax declaration and a semantic specification. The syntax
declaration lists the operations involved, as well as their
domains and co-domains, corresponding to the input
parameters and output of the operations. The semantic
specification consists of axioms in the form of conditional
equations that describe the behavioral properties of the
operations.

4.1 Terminology and notations used in
Algebraic specification

Before discussing about class level testing using UML
statechart and algebraic specification. let’s have a look on
basic terminology and notations of algebraic specification.
A term is a sequence of operations in an algebraic
specification. For example,

new.push(10).push(20).pop

is a term in the class of integer stacks above. A
term without variables is called a ground term.
 If a subterm within a ground term is unified against the
left-hand side of an equational axiom and substituted by the
right-hand side of the axiom, it means that the ground term
is transformed into another using the axiom as progressive
left to- right rewriting rules. A ground term is in normal
form if and only if it cannot be further transformed by any
axiom in the specification. For example,
new.push(10).push(20) is in normal form, but
new.push(10).push(20).pop is not, since the latter can be
transformed by axiom a4 into new.push(10).

An algebraic specification is said to be canonical if and
only if every sequence of rewrites on the same ground term
reaches a unique normal form in a finite number of steps. In
a given class C, operations or methods that return the values
of the attributes of the objects in C are called the observers
of C. Operations or methods that return initial objects of C
are called creators of C. Operations or methods that
transform the states of objects in C are called constructors
or transformers of C. The current state of an object is the
combination of current values of all attributes of this object.
When a constructor or transformer acts on an object, it
changes the value of at least one attribute of the object. The
difference between a constructor and a transformer is that a
transformer may be eliminated from a term by applying
rewriting rules, but a constructor may not. In Example 1, for
instance, the operation new is a creator, push(N) is a
constructor, pop is a transformer, and is Empty and top are
observers.

An observable context on a class C is a sequence of
constructors or transformers of C (possibly an empty
sequence) followed by an observer of C. For example,
push(100).push(200).pop.top is an observable context on the
class Stack. The observer top is also regarded as an
observable context on Stack.

Definition 1 (Observational Equivalence of Object).
Given a canonical specification and an implementation of a
class C, two objects O1 and O2 are said to be
observationally equivalent (denoted by O1 ≈obs O2) if and
only if the following condition is satisfied:

If no observable context oc on C is applicable to O1 and
O2, then O1 and O2 are identical objects. Otherwise, for any
such oc on C, O1 oc and O2 oc are observationally
equivalent objects.

5 Testing Methodology

The testing process of our methodology begins with the
tester indicating the .NET component to be tested and the
statechart with algebraic specification for the class behavior.
Based upon this information, the tester defines the
representation mapping by associating the code to the
specification. Based upon these selections, our framework
automatically produces test drivers (with embedded test
cases and test oracles) to satisfy the criterion and
compiles/executes the test drivers with user given
parameters. At the end of this process, failures, detected by
the test oracles as discrepancies between behavior and the
statechart specification, are presented to the user. Fig. 1
illustrates this process. In the follow sections, we further
explain each step in this process, highlighting our efforts.

5.1 Test Driver generator

Test driver generator is the heart of whole mechanism.
Through the help of XMI Parser it reads XMI representation.
Using .NET it reads executable version of the implemented
component and based on these two information’s it creates a
test driver in C#. With the help of XMI Parser it writes
transition table.

Fig.1. Flow of automatic testing

5.2 Test Driver

Test driver generator creates test driver. When Test
driver is executed first it creates an object of the class to be
tested using class constructors and puts object in an initial
state (.NET provides support to create objects of non system
scope classes), initial state information is provided in
transition table. Test driver reads every transition of
transition table and receives test data from the data domain
provided with event argument. After the execution of
triggering event test driver checks for the consistency
between component implementation in .NET and
component specification in UML statechart using test
oracles which are embedded in transition table. Using
algebraic specification equivalence of transitions is
identified which helps to determine finite number of
testcases.

6 Conclusions

Our Method that is UML Statechart and algebraic
specification based automatic software testing method
attempts to verify if the implementation’s behavior is
consistent with the statechart and collaboration based
specification, detecting failures of the implementation. It
does so by generating a test driver.
 This test driver goes through various sequences of states
(based upon the specification, stored in transition table) of
an object and verifies correctness of the object’s attribute
values as it transitions between states and whether the
transitions are to the correct state, thereby meeting the
specified behavior.

References

[1] http://w3.org/TR/REC-xml. Extensible markup

language (xml).

[2] R. V. Binder. Testing Object-Oriented Systems,
Models, Patterns, And Tools. Addison Wesley
Longman, Inc., 2000.

[3] N. Parrington I.Mitchell B.Y.Tsai, S.Stobart. An
automatic test case generator derived from state-
based testing.

[4] Huo Yan Chen, T. H. Tse, and T. Y. Chen. Taccle: a
methodology for object-oriented software testing at
the class and cluster levels. ACM Trans. Softw. Eng.
Methodol., 10(1):56–109, 2001.

[5] Object Management Group. XML Metadata
Interchange (XMI). Technical report, Object
Management Group., http://www.omg.org.

[6] Object Management Group. Meta Object Facility
(MOF). Technical report, Object Management
Group, specification (version 1.3). Edition, March
2000.

[7] A. Abdurazik, P. Ammann J. Offutt, and S. Liu.
Generating test data from state-based specifications.

[8] G. Booch, J. Rumbaugh, and I. Jacobson. The
Unified Modeling Language Reference Manual.
Addison Wesley Longman, Inc., 1999.

[9] G. Booch, J. Rumbaugh and I. Jacobson. Unified
Modeling Language (UML). OMG, 2001.

[10] G.H.Travassos and M.E.R.Vieira. Technology of
object-oriented languages and systems.

[11] A. J. Offutt and A. Abdurazik. Generating tests
from uml specifications.

[12] S. M. Cho, D. H. Bae, S. D. Cha, Y. G. Kim and H.
S. Hong. Test case generation from UML state
diagrams.

